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Abstract—We consider the problem of private wireless feder-
ated learning through a massive MIMO multiple-access channel
(MAC). In this problem, a parameter server (PS) having M
antennas needs to train a global machine-learning model with the
aid of K single-antenna users. Each user trains a local model to
update the PS’s global model without leaking information about
the user’s local model. By harnessing the additive nature of the
MAC, the PS aggregates the local updates and updates the global
model. We show that by adopting the random orthogonalization
technique and careful noise injection by the users, maintaining the
privacy of local models is possible under local differential privacy
metrics without sacrificing the accuracy/convergence rate of the
global machine-learning model. We derive the exact achievable
privacy level. Our results show that the privacy level is a function
of the channel gains. We substantiate our findings by carrying
out a standard classification task, which achieves an accuracy of
89% in less than 15 communication rounds while maintaining
an acceptable privacy level of the users’ local models. Moreover,
numerical results show that the privacy leakage is decreasing in
the number of users K, while it is increasing in the number of
antennas M.

Background and Objective: Random orthogonalization is
an uplink communication mechanism for federated learning
(FL) [1] in a massive multiple-input multiple-output (MIMO)
setting [2]. Random orthogonalization leverages the channel
hardening and favorable propagation properties of massive
MIMO to achieve notable performance gains in FL. with no
channel state information required at the users and a significant
reduction in the channel estimation overhead at the receiver. A
prominent challenge in FL settings is preserving the privacy of
personal dataset, which may be leaked by observing the users’
local models [3], [4]. In this work, we explore the potential
of random orthogonalization for preserving a certain level of
privacy in FL. This is motivated by the fact that the parameter
server (PS) makes use of the superposition of the updates
received from the users instead of decoding the update from
individual users.

System Model: Consider a wireless FL system with K
single-antenna users and a parameter server (PS) with M
antennas. Users communicate with the PS through a wireless
fading multiple access channel (MAC). In each iteration, users
train a local model using stochastic gradient descent (SGD) and
then communicate the resulting d dimensional update back to
the PS over d channel uses. The training process continues until

a specified number of iterations 7'. Denote by :Jc,i) € R the
update transmitted by user k in the i-th channel use of iteration
t. The transmitted signal vector over d channel uses is given

by x(f) = [x,(;)l :Ugf)z :L,(f)d] and is subject to an average
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power constraint P, i.e., E(||x t)H ) < P. Consequently, for

alli € {1,2,...,d} and t € {1,2,...,T}, the received signal
(t) € RM at PS in channel use ¢ of iteration t is given by,
(t) Z hk.T(t) + m(t) (1)
k=1

where, h;, € ]Rf %1 is the wireless channel vector between
user k and the PS.

We assume a block flat-fading channel, where the channel
coefficient remains constant within the duration of a communi-
cation block. mgt) € RM*1 in (1) is the receiver noise, whose
elements are independent and identically distributed (i.i.d.)
with zero-mean and variance a . We assume that the channel
state information is unavailable to the users. The PS carries out
channel estimation before the start of the training process to
estimate the channel vectors sum h, = Z,Ile h;. Note that,
under the random orthogonalization scheme, the PS does not
need to know the individual channels of all the users. This,
in turn, results in significant reductions in channel estimation
overheads, especially for large values of K and M.

Federated Learning Model: Each user k has a local pri-
vate dataset Dy with Dy data points, denoted as Dy =
{(uS‘k)7 J(k))}jD:"‘l, where u'® is the j-th data point and vgk)
is the corresponding label at user k. For some training loss
function f(-), the local loss function at user k is given by,

Dy,
fi(w) = Dik S f(ws (o)),
j=1

where w € R? is the parameter vector to be optimized. The
objective of the FL system is to obtain the optimal global
model w* at the PS by minimizing the global loss function

Zk D/ ZDkfk

The minimization of F'(w) is carried out iteratively through
a distributed SGD algorithm. More specifically, in the ¢-th
training iteration, the PS broadcasts the global parameter vector
w(®) to all users. User k then comyutes its local gradient

F(w)® —/0——

g,g) using stochastic mini batch B C Dy, with size ny,
ie., forall t € {1,2,...,T}, |Bk | = ng. Therefore, for all
ke{l,2,...,K}andall t € {1,2,...,T}, the local gradient

g,(f) is given by,

Z V u(w®; (ul o),

jeBy
Subsequently, the local parameter at user K, w](f) =

[w ,(:)1, ,(:)2, . w,(f?i] is updated according to the update rule
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Fig. 1. Testing accuracy of the proposed mechanism as a function of the

number of iterations ¢ for different antenna settings.

w,(:H) (t) — Nt g,(C ), where 7, is the learning rate of the

distributed 1earn1ng algorithm at iteration ¢. The PS aggregates
the local model updates from the users to obtain a new global
model W(t+1 1 Zk W (t+1)

Privacy: To guarantee an acceptable level of data privacy
for the FL users, the SGD algorithm needs to satisfy local
differential privacy (LDP) constraints for each user. Specifi-
cally, we employ the (e, d)-LDP notion of [5] to quantify the
data privacy level provided by the algorithm. To realize such
privacy guarantees, we employ the Gaussian mechanism [5],
where each user adds a small amount of artificial Gaussian
noise to its model update before transmitting it to the PS.

Proposed Transmission Scheme: Under the proposed pri-
vacy enhancing FL scheme, the signal transmitted by the
kth user during channel use ¢ € {1,2,...,d} of iteration
te{1,2,...,T} is given by,

2 = an (wll) +0f)) @)
(0

where n, ; is the local perturbation noise generated inde-

pendently at the k-th user such that n(t) ~ N(0,0%), and

ay 1s a scaling coefficient to ensure that the average power
constraint is met, We further assume that the norm of the
model update wkt is bounded by some constant C' > 0.

To ensure this, we normalize the update vector as w(t) =

min (1, c/ ||w(t) Il2 ) . In order to ensure coherent super-

position for obtaining unblased estimates of the model updates,
for all £ € {1,2,...,K}, set a = a = +/P. Then, the
received signal at the PS in channel use i of iteration ¢ is

y® — Zh 22 + m)
k=1
K
=a ) huwy) +a Z b +m{”,  (3)
k=1

where hy is the channel between the kth user and the PS.
The PS performs the following post-processing on the received
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Fig. 2. Privacy leakage per user ¢; vs number of users K for different antenna
settings, with o2 = 0.1, o%n =1l,a=3C=1and§ =105

signal in channel use 7 to obtain the aggregate update w(tH)
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where, in step (a), the amount of local perturbation across users
is chosen to be the same, i.e., o7 = 02, Vk.

The privacy attained by the proposed scheme is quantified
by the following theorem:

with variance

Theorem 1. The proposed transmission scheme achieves
(€, 0)-LDP per iteration for each user k, where

Il 20 [ 125

i o 2log 5 ©6)

Preliminary numerical analysis: The accuracy and conver-
gence rate of the proposed mechanism are illustrated in Fig. 1
for a handwritten digit classification task. It is observed that
the mechanism achieves an accuracy of 89% in less than 15
iterations while maintaining the privacy of the users’ local
models. Fig. 2 shows the variation of the privacy leakage in (6)
as a function of the number of users.
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